ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I

TEMA 4
Algebra booleana y puertas
lógicas

TEMA 4. Algebra booleana y puertas lógicas

- 4.1 Definición de álgebra de Boole
- 4.2 Teoremas del álgebra de Boole
- 4.3 Álgebra de Boole bivalente
- 4.4 Funciones lógicas básicas
- 4.5 Simplificación de funciones lógicas

4.1. DEFINICIÓN DE ÁLGEBRA DE BOOLE

- Una estructura matemática, se construye a partir de:
 - -Un conjunto de elementos sobre los que se definen unos operadores que permiten realizar operaciones en ellos, y
 - Estableciendo unos postulados o axiomas que relacionan tanto al conjunto de elementos como al conjunto de operadores.

Algebra de Boole (postulados de Huntington)

- Se parte de una estructura algebraica (B, +, ·), formada por:
 - Un conjunto de elementos B y
 - Dos operaciones definidas en el mismo, denominadas + y · (suma y producto).
- Se dice que es un álgebra de Boole si cumple los siguientes axiomas, también conocidos como postulados de Huntington.

Postulados de Huntington (I)

Postulado I. El conjunto B es cerrado con respecto a las dos operaciones.

Es decir, se cumple que $\forall a, b \in B$:

$$a+b \in B$$

$$a \cdot b \in B$$

$$[4.1]$$

Postulado II. Existe un elemento identidad en las dos operaciones.

En la operación + el elemento identidad es el 0 y en la operación · es el 1, cumpliéndose que $\forall a \in B$:

$$a + 0 = a$$

$$a \cdot 1 = a$$

$$[4.2]$$

Postulado III. Las dos operaciones cumplen la propiedad conmutativa.

Es decir, se cumple que $\forall a, b \in B$:

$$a+b=b+a$$

$$a \cdot b = b \cdot a$$
[4.3]

Postulados de Huntington (II)

Postulado IV. Cada operación es distributiva con respecto a la otra.

Es decir, se cumple que $\forall a, b, c \in B$:

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$

$$a + (b \cdot c) = (a+b) \cdot (a+c)$$
[4.4]

Postulado V. Existe un elemento complementario.

Se cumple que $\forall a \in B$ existe otro elemento de B llamado "complementario de a" que se representa por \overline{a} (la línea horizontal indica **complemento** o **negación** de a), siendo:

$$a + \overline{a} = 1$$

$$a \cdot \overline{a} = 0$$
[4.5]

Postulado VI. Número de elementos.

En el conjunto B existen al menos dos elementos diferentes, cumpliéndose que $\forall a, b \in B$:

$$a \neq b$$
 [4.6]

4.2. TEOREMAS DEL ÁLGEBRA DE BOOLE

- Principio de Dualidad
 - Es consecuencia de la simetría de los postulados con respecto a:
 - Las dos operaciones + y ·, y
 - A los dos elementos de identidad 0 y 1.
- Cada axioma se define doblemente mediante dos expresiones duales
 - Para la operación + y para la operación *

Ley de idempotencia. Para cualquier elemento *a* en un álgebra de Boole, se verifica que:

$$a + a = a$$

$$a \cdot a = a$$
 (identidad dual) [4.7]

Operaciones con elementos identidad. Para cualquier elemento *a* en un álgebra de Boole, se cumple que:

$$a+1=1$$

$$a \cdot 0 = 0$$
 (identidad dual) [4.8]

Ley de involución. Para todo elemento a en un álgebra de Boole, se verifica:

$$\overline{\overline{a}} = a$$
 [4.9]

Ley de absorción. Para cada par de elementos a y b de un álgebra de Boole se verifica que:

$$a + a \cdot b = a$$

 $a \cdot (a + b) = a$ (identidad dual) [4.10]

En el álgebra de Boole se verifica que:

$$a + (\overline{a} \cdot b) = a + b$$

 $a \cdot (\overline{a} + b) = a \cdot b$ (identidad dual) [4.11]

En un álgebra de Boole las **operaciones** + $y \cdot son$ asociativas. Para toda terna de elementos a, b y c se verifica que:

$$a + (b+c) = (a+b)+c$$

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$
 (identidad dual) [4.12]

Leyes de De Morgan. En un álgebra de Boole se verifica que:

$$\frac{\overline{a+b+c+d}+...=\overline{a}\cdot\overline{b}\cdot\overline{c}\cdot\overline{d}\cdot...}{a\cdot b\cdot c\cdot d\cdot...=\overline{a}+\overline{b}+\overline{c}+\overline{d}+...} (identidad dual)$$
[4.13]

Teorema. El complemento de una función se obtiene intercambiando las operaciones + y , y reemplazando cada variable por su complementario.

$$\overline{f(a,b,c,d,+,\cdot)} = f(\overline{a}, \overline{b}, \overline{c}, \overline{d}, \cdot, +)$$
 [4.14]

Leyes de Morgan

Leyes...de...Morgan
$$\longrightarrow \overline{a+b} = \overline{a} \bullet \overline{b}$$

$$\overline{a \bullet b} = \overline{a} + \overline{b}$$

а	b	$F = \overline{a + b}$	ā	\overline{b}	$F = \overline{a} \bullet \overline{b}$	$F = \overline{a \bullet b}$	$F = \overline{a} + \overline{b}$
0	0	1	1	1	1	1	1
0	1	0	1	0	0	1	1
1	0	0	0	Ψ.	0	1	1
1	1	0	0	0	0	0	0

Teorema...de...Shannon
$$\longrightarrow F = f(a,b,c) = a \bullet f(1,b,c) + \overline{a} \bullet f(0,b,c)$$

 $F = bc \Rightarrow F = abc + \overline{abc}$

4.3. ÁLGEBRA DE BOOLE BIVALENTE

- Dependiendo del conjunto B elegido y de cómo se especifiquen las operaciones + y · se pueden definir numerosas álgebras de Boole.
- Denominada así por estar definida sobre un conjunto con dos elementos B = {0, 1} y las operaciones suma lógica + y producto lógico ·,
 - Cumple con los postulados
 - Se demuestran por inducción perfecta

Tabla 4.1. Definición de las operaciones suma lógica + y producto lógico · .

a b	a + b	$a \cdot b$
0 0	0	0
0 1	1	0
1 0	1	0
1 1	1	1

Tabla 4.2. Complemento lógico.

а	\overline{a}
0	1
1	0

Tabla 4.3. Comprobación de la ley distributiva del producto lógico · sobre la suma lógica +.

abc	b+c	$a \cdot (b + c)$	$a \cdot b$	$a \cdot c$	$(a \cdot b) + (a \cdot c)$
000	0	0	0	0	0
001	1	0	0	0	0
010	1	0	0	0	0
0 1 1	1	0	0	0	0
100	0	0	0	0	0
101	1	1	0	1	1
1 1 0	1	1	1	0	1
1 1 1	1	1	1	1	1

Tabla 4.4. Comprobación de que el álgebra bivalente cumple el postulado quinto.

а	ā	$a+\overline{a}$	$a \cdot \overline{a}$
0	1	1	0
1	0	1	0

4.3.1. Variables y funciones lógicas

Variable Lógica:

- Un símbolo, que representa a cualquiera de los elementos de un conjunto B
 - Variable binaria: puede tomar los valores 0 y 1

Función lógica f

– Es una función booleana definida en B^n , cuya imagen pertenece al conjunto $B = \{0, 1\}$, siendo su valor igual al de una expresión algebraica de variables lógicas unidas mediante las operaciones de suma lógica +, producto lógico · y el operador complemento.

Algunas expresiones de funciones lógicas son las siguientes:

$$f_1 = f_1(b, a) = b a + b \overline{a}$$

$$f_2 = f_2(c, b, a) = c b + a$$

$$f_3 = f_3(c, b, a) = b a + c b \overline{a} + \overline{b} a + a$$

$$f_4 = f_4(c, b, a) = (b + a)(c + b + \overline{a})(\overline{b} + a)$$

$$f_5 = f_5(e, d, c, b, a) = \overline{e} b a + \overline{d} c b \overline{a} + \overline{b}$$

El valor de una función se determina sustituyendo las variables por sus valores en la expresión algebraica y aplicando las reglas definidas para las operaciones + y .

Ejemplo:

La función f_3 es la siguiente:

$$f_3 = f_3(c, b, a) = b a + c b \overline{a} + \overline{b} a + a$$

Sustituyendo en la expresión algebraica f_3 las variables por sus valores (a = 1, b = 0 y c = 1), se obtiene el resultado de la función:

$$f_3 = f_3(1,0,1) = 0.1 + 1.0 \cdot \overline{1} + \overline{0}.1 + 1 = 0 + 0 + 1 + 1 = 1$$

4.3.2. Representación de las funciones lógicas mediante tablas de verdad

TABLA DE LAVERDAD:

-Tabla que recoge todas las combinaciones de las variables de entrada y los valores que toman las salidas.

c b a	f_3
0 0 0	0
0 0 1	1
0 1 0	0
0 11	1
100	0
101	1
1 1 0	1
1 1 1	1

4.3.3. Representación de las funciones lógicas en su forma canónica

- Una función lógica se puede representar como:
 - Suma de productos

$$f_3 = f_3(c, b, a) = b a + c b \overline{a} + \overline{b} a + a$$

Producto de sumas

$$f_4 = f_4(c, b, a) = (b + a)(c + b + \overline{a})(\overline{b} + a)$$

- Término Canónico de una función lógica
 - A todo producto o suma en el que aparecen todas las variables en su forma directa a o complementada a'.

Formas Canónicas

- Función Canónica.
 - Función formada, exclusivamente, por términos de sumas canónicas o bien de productos canónicos
- Formas canónicas
 - 1^a Forma Canónica (minitérminos minterm m_i)
 - Suma de productos de TODAS las variables
 - 2ª Forma Canónica (maxitérminos maxterm
 - $-M_i$
 - Productos de sumas canónicas (todas las variables)

Expresión de términos mínimos

- Se utilizan para expresar de una forma "sencilla" las funciones lógicas
- 1º Forma canónica términos mínimos
 - Cada producto se denomina m_i siendo i el valor decimal de la combinación binaria que se obtiene al sustituir:
 - Por 1 las variables que, en el producto, aparecen de forma natural (directa),
 - Por cero las variables que aparecen en forma complementaria

Ejemplo:

• Sea f(abc)= ab'c + a'bc + abc' + a'b'c' $101 \quad 011 \quad 110 \quad 000$ $m_5 \quad m_3 \quad m_6 \quad m_0$

Expresión en términos máximos

- Se representa por M_i (producto de sumas), teniendo los subíndices el mismo significado
- F(abc) =(a'+b+c'). (a+b'+c).(a+b+c)

 0 1 0 1 0 1 1 1 1 M_2 M_5 M_7

Tabla 4.6. Tabla de minterms y maxterms para una función de tres variables.

Decimal	c b a Minte		rms	Maxter	ms
0	000	$\overline{c} \ \overline{b} \ \overline{a}$	m_0	c+b+a	M_7
1	001	$\overline{c} \overline{b} a$	m_1	$c+b+\overline{a}$	M_6
2	010	\overline{c} b \overline{a}	m_2	$c + \overline{b} + a$	M_5
3	011	\overline{c} b a	m_3	$c + \overline{b} + \overline{a}$	M_4
4	100	$c \overline{b} \overline{a}$	m_4	$\overline{c} + b + a$	M_3
5	101	$c \overline{b} a$	m_5	$\overline{c} + b + \overline{a}$	M_2
6	110	$c b \overline{a}$	m_6	$\overline{c} + \overline{b} + a$	M_1
7	1 1 1	c b a	m_7	$\overline{c} + \overline{b} + \overline{a}$	M_0

4.3.4. Obtención de la función canónica a partir de la tabla de verdad. Teorema de Expansión

Minterms:

- Se toman las salidas que son "1" y se expresa como suma de términos producto en los que:
 - Las variables que son "1" se expresan como literales (forma directa) y
 - Las que son "0" como invertidas (complementario).

Término maxterm	Término minterm	a	b	С	F
7	0	0	0	0	0
6	1	0	0	1	1
5	2	0	1	0	1
4	3	0	1	1	0
3	4	1	0	0	0
2	5	1	0	1	1
1	6	1	1	0	1
0	7	1	1	1	1

$$F(a,b,c) = \overline{abc} + \overline{abc} + \overline{abc} + a\overline{bc} + abc \implies$$

$$F(a,b,c) = m_1 + m_2 + m_5 + m_6 + m_7 = \sum m(1,2,5,6,7)$$

Maxterms

- Se toman las salidas que son "0" y se expresa como producto de términos suma en los que
 - Las variables que son "0" se expresan como literales (forma directa) y
 - -Las que son "1" como invertidas (complementario).

Término maxterm	Término minterm	а	b	С	F
7	0	0	0	0	0
6	1	0	0	1	1
5	2	0	1	0	1
4	3	0	1	1	0
3	4	1	0	0	0
2	5	1	0	1	1
1	6	1	1	0	1
0	7	1	1	1	1

$$F(a,b,c) = (a+b+c)(a+\overline{b}+\overline{c})(\overline{a}+b+c) \implies$$

$$F(a,b,c) = M7 \cdot M4 \cdot M3 = \prod M(3,4,7)$$

4.3.5. Conversión entre expresiones canónicas en minterms y Maxterms

Paso de la 1^a forma canónica a la 2^a forma canónica:

- 1. Se representa la función invertida, tomando los términos minterm que no aparecen.
- 2. Se hace la inversa de la función aplicando Morgan a los términos canónicos.
- 3. Se obtiene el complemento a 2ⁿ-1 de cada uno de los términos. Siendo n el número de variables

$$F(a,b,c) = m_1 + m_2 + m_5 + m_6 + m_7 = \sum m(1,2,5,6,7)$$

1.
$$\overline{F(a,b,c)} = m_0 + m_3 + m_4 = \sum m(0,3,4)$$

2.
$$F(a,b,c) = \overline{m_0 + m_3 + m_4} = \overline{\sum m(0,3,4)} \implies F(a,b,c) = \overline{m_0} \cdot \overline{m_3} \cdot \overline{m_4}$$

$$F(a,b,c) = M_7 \cdot M_4 \cdot M_3$$

Paso de la 2ª forma canónica a la 1ª forma canónica

- 1. Se representa la función invertida, tomando los términos maxterm que no aparecen.
- 2. Se hace la inversa de la función aplicando Morgan a los términos canónicos.
- 3. Se obtiene el complemento a 2ⁿ-1 de cada uno de los términos. Siendo n el número de variables

$$F(a,b,c) = M7 \cdot M4 \cdot M3 = \prod M(3,4,7)$$

1.
$$\overline{F(a,b,c)} = M_0 \cdot M_1 \cdot M_2 \cdot M_5 \cdot M_6 = \prod M(0,1,2,5,6)$$

2.
$$F(a,b,c) = \overline{M_0 \cdot M_1 \cdot M_2 \cdot M_5 \cdot M_6} = \overline{\prod M(0,1,2,5,6)} \implies$$

$$F(a,b,c) = \overline{M_0} + \overline{M_1} + \overline{M_2} + \overline{M_5} + \overline{M_6}$$

3.
$$F(a,b,c) = m_7 + m_6 + m_5 + m_2 + m_1$$

4.3.6. Conversión de expresiones normalizadas a canónicas

- Las expresiones normalizadas
 - Son aquellas en las que **no** todos sus términos son canónicos y están únicamente formadas por suma de productos o por producto de sumas.

Son funciones normalizadas,

$$f_1(c, b, a) = c b + \overline{c} b \overline{a}$$

 $f_2(c, b, a) = (c + b)(\overline{c} + b + \overline{a})$

sin embargo no es normalizada,

$$f_3(c, b, a) = c(b + \overline{b} a) + \overline{b}$$

pudiéndose normalizar si se opera sobre ella (desarrollando sus paréntesis),

$$f_3(c, b, a) = c(b + \overline{b}a) + \overline{b} = cb + c\overline{b}a + \overline{b}$$

Para convertir una expresión normalizada a canónica

- a) En el caso de suma de productos,
 - Se multiplica cada término producto no canónico por la variable que falta más ella misma negada.
 - Multiplicamos por uno (a + a') = 1
- b) En el caso de producto de sumas
 - Se suma en cada factor no canónico la variable que falta por ella misma negada.
 - Sumamos cero (a.a') = 0
- En ambos casos, el proceso se repite por cada variable que falte en cada término.

La conversión de la función normalizada f_3 , del ejemplo anterior, a expresión canónica se realiza del siguiente modo:

$$f_{3}(c,b,a) = cb + c\overline{b} \ a + \overline{b} = cb (a + \overline{a}) + c\overline{b} \ a + \overline{b} (c + \overline{c})(a + \overline{a}) =$$

$$= cba + cb\overline{a} + c\overline{b} a + c\overline{b} \overline{a} + c\overline{b} \overline{a} + \overline{c} \overline{b} \overline{a} + \overline{c} \overline{b} \overline{a} =$$

$$= cba + cb\overline{a} + c\overline{b} \overline{a} + c\overline{b} \overline{a} + \overline{c} \overline{b} \overline{a} = \sum_{\overline{a}} (0,1,4,5,6,7)$$

4.3.7. Conjunto de funciones de dos variables

Tabla 4.7. Tabla de verdad de las dieciséis funciones distintas que se pueden formar con dos variables.

b a	f_{θ}	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}
0 0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
0 1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1 0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
 1 1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Tabla 4.8. Tabla resumen de las dieciséis funciones distintas que se pueden formar con dos variables.

FUNCIÓN	NOMBRE	OPERADOR	OBSERVACIÓN
$f_0 = 0$	Nula		Constate binaria 0
$f_1 = \overline{b} \ \overline{a} = \overline{b + a}$	NOR	$\overline{b+a}$	No OR
$f_2 = \overline{b} a$	Inhibición	a/b	a pero no b
$f_3 = \overline{b}$	Complemento	\overline{b}	No b
$f_4 = b \overline{a}$	Inhibición	b/a	b pero no a
$f_5 = \overline{a}$	Complemento	\overline{a}	No a
$f_6 = \overline{b} \ a + b \ \overline{a}$	OR exclusiva	$b \oplus a$	b distinta de a
$f_{7} = \overline{b} + \overline{a} = b \ a$	NAND	$\overline{b \cdot a}$	No AND
$f_{\rm g} = b \ a$	AND	$b \cdot a$	<i>b</i> y <i>a</i>
$f_9 = \overline{b} \ \overline{a} + b \ a$	Equivalencia	b ⊙ a	b igual a a
$f_{10} = a$	Transferencia		а
$f_{11} = \overline{b} + a$	Implicación	$b \Rightarrow a$	Si b entonces a
$f_{12} = b$	Transferencia		Ь
$f_{13} = b + \overline{a}$	Implicación	$a \Rightarrow b$	Si a entonces b
$f_{14} = b + a$	OR	b + a	b ó a
$f_{15} = 1$	Identidad		Constate binaria 1

4.3.8. Función incompletamente definida

 Se define una función incompletamente 	c b a	f_3
definida o función	0 0 0	X
incompleta como aquella	001	1
que puede tomar	010	1
indistintamente el valor 0	0 11	0
ó 1 para una o más combinaciones de sus	100	1
variables de entrada,	101	X
también llamadas '	1 1 0	0
términos indiferentes o	1 1 1	1
indiferencias		

$$f_1(c,b,a) = \sum_{3} (1,2,4,7) + X(0,5)$$
$$f_1(c,b,a) = \prod_{3} (1,4) \cdot X(2,7)$$

4.4. FUNCIONES LÓGICAS BÁSICAS

AND (Y)	$F = a \bullet b$	$\displaystyle \stackrel{\textstyle \downarrow}{\displaystyle \bigcap}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
OR (O)	F = a + b	À	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
INVER	$F = \overline{a}$	$\overset{\diamond}{\rightharpoonup}$	$ \begin{array}{c cccc} a & F = \overline{a} \\ \hline 0 & 1 \\ 1 & 0 \end{array} $
NAND	$F = \overline{a \bullet b}$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

L			<u> </u>					· .
					а	b	$F = \overline{a+b}$	
				-	0	0	1	
	NOR	$F = \overline{a+b}$	$\supset \sim$		0	1	0	
					1	0	0	
					1	1	0	
					а	b	$F = a \oplus b$	
	0				0	0	0	
	O exclusive	$F=a\oplus b$			0	1	1	
on and a	0,0,0,0,0				1	0	1	
					1	1	0	
					а	b	$F = \overline{a \oplus b}$	
	NOR	$F = \overline{a \oplus b}$	□>-		0	0	1	
	exclusive				0	1	0	
					1	0	0	
					1	1	1	
	Seguidor Buffer	F = a	→> —		а	F	= a	
					0		0	
					1		1	

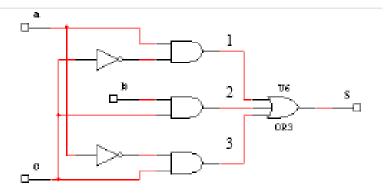
Ejercicios

Expresar F(a,b,c) = a + bc en forma de suma de minitérminos.

Hallar la 2ª forma canónica de F(a,b) = a + ab

Hallar la 2ª forma canónica de $\,F=m_{\rm l}+m_{\rm 4}+m_{\rm 6}+m_{\rm 7}$

Indicar la función lógica del circuito



х	у	z	S0	S1	S2
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	1	0	1
1	1	1	1	0	1

¿Cuál de las funciones S0, S1, S2 de la tabla de la verdad es equivalente a la función $f(x,y,z) = xy(z+\overline{z}) + x\overline{y}z$

Página 5

4.5 Simplificación de Funciones

Métodos

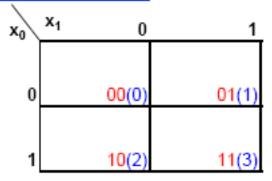
Aplicación de las leyes del álgebra de Boole Mapas de Karnaugh

Mapas de Karnaugh

- Proceso sistemático para la simplificación de expresiones de conmutación.
- Se trata de una matriz de casillas o celdas, cada una de las cuales representa un mini-término de una Función Canonica
- Si FC tiene n-variables = 2ⁿ casillas.

Mapas de Karnaugh (minitérminos)

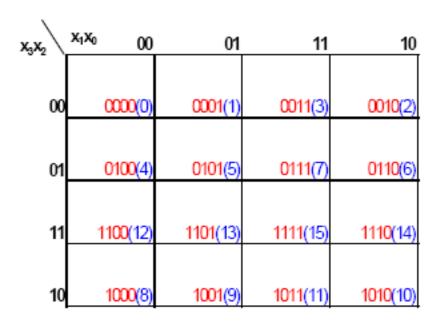
2 variables



3 variables

X ₂ \	X ₁ X ₀	00	01	11	10
0		000(0)	001(1)	011(3)	010(2)
1		100(4)			

4 variables



Karnaugh: Procedimiento de simplificación

- Paso 1: rellenar el mapa
 - Ponemos un uno en la casilla correspondiente a cada minitérmino
 - El minitérmino m_i en la casilla i
- Construir los rectángulos
 - Cubrir todos los minitérminos con el mínimo número de rectángulos posibles.
 - Construir rectángulos tan grandes como sea posible.
 - Para simplificar, una casilla se puede cubrir varias veces.
 - Debe haber en el nuevo cuadrado algún término distinto
 - Hay que empezar con las casillas que se pueden cubrir de menos maneras.

Ej.1: $f(x_3x_2x_1x_0)=\sum m(0,2,5,6,7,8,10,15)$

$$\frac{f(x_3x_2x_1x_0) = \overline{x_3}\overline{x_2}\overline{x_1}\overline{x_0} + \overline{x_3}\overline{x_2}\overline{x_1}\overline{x_0} +$$

Las casillas 5 y 15 sólo se pueden cubrir de una manera ⇒ son las primeras que cubrimos.

 X_1X_0 00 01 10 0000(0) 0011(3) 00 0001(1) 0010(2) 01 0100(4)0110(6)1100(12) 1101(13) 11 1110(14) TTT (15) 10 1000(8)1001(9) 1011(11) 1010(10)

 Las esquinas adyacentes van juntas.

La casilla 6 puede ir con la 2 y con la 7. Elegimos la 7.

Procedimiento de simplificación. Paso 2

□ Si tenemos un diagrama para n-variables y creamos rectángulos de 2^r casillas ⇒ (n-r) dígitos iguales = número de variables en la expresión simplificada.



■ n=4
$$\wedge$$
 r=2 \Rightarrow 2 variables $\Rightarrow x_0x_2$

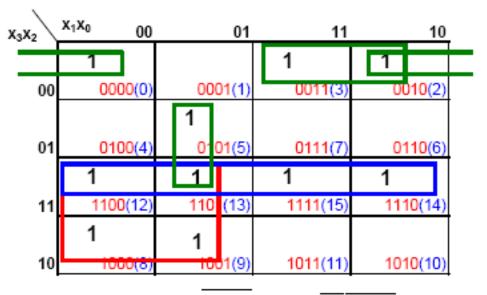
5 y 7:
$$\overline{x_3}x_2x_0$$

7 y 15:
$$x_1x_2x_0$$

6 y 7:
$$x_3x_2x_1$$

$$f(x_3x_2x_1x_0) = \overline{x_2}\overline{x_0} + \overline{x_3}x_2x_1 + \overline{x_3}x_2x_0 + x_2x_1x_0$$

Ej.2: $f(x_3x_2x_1x_0) = \sum m(0,2,3,5,8,9,12,13,14,15)$



• n=4
$$\wedge$$
 r=1 \Rightarrow 3 variables $\Rightarrow x_3x_2x_1 \qquad x_3x_2x_0 \qquad \overline{x_1}x_0x_2$

- n=4 ∧ r=2 ⇒ 2 variables ⇒ X₃X₂
- n=4 ∧ r=2 ⇒ 2 variables ⇒ x₃x₁

$$f(x_3x_2x_1x_0) = \overline{x_3x_2}x_1 + \overline{x_3}\overline{x_2}x_0 + x_2\overline{x_1}x_0 + x_3x_2 + x_3\overline{x_1}$$

Ej.3: $f(x_3x_2x_1x_0) = \sum m(0,1,2,3,5,7,8,9,10,11)$

X ₃ X ₂ \	1,X ₀ 00	01	11	10
	1	1	1	1
00	0000(0)	0001(1)	001 1(3)	0010(2)
		1	1	
01	0100(4)	0101(5)	0111(7)	0110(6)
11	1100(12)	1101(13)	1111(15)	1110(14)
	1	1	1	1
10	1000(8)	1001(9)	1011(11)	1010(10)
	ı			

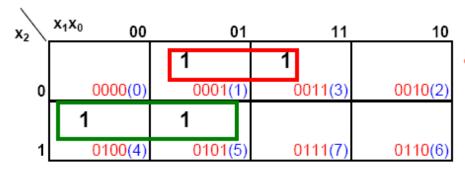
• n=4
$$\wedge$$
 r=3 \Rightarrow 1 variable \Rightarrow x_2

$$f(x_3 x_2 x_1 x_0) = \overline{x_2} + \overline{x_3} x_0$$

Ej.4: $f(x_2x_1x_0) = \sum m(1,3,4,5)$

- n=3 \wedge r=1 \Rightarrow 2 variables $\Rightarrow x_2x_0$
- n=3 \wedge r=1 \Rightarrow 2 variables $\Rightarrow x_1 x_0$
- 0110(6) n=3 \wedge r=1 \Rightarrow 2 variables $\Rightarrow x_1x_2$

$$f(x_2x_1x_0) = \overline{x_2}x_0 + \overline{x_1}x_0 + \overline{x_1}x_2$$

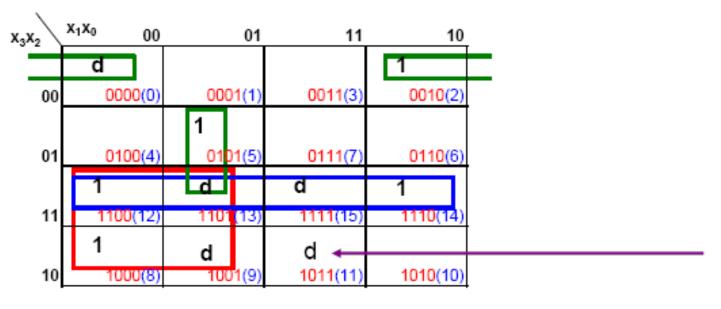


- n=3 ∧ r=1 ⇒ 2 variables ⇒ X₂X₀
- n=3 \wedge r=1 \Rightarrow 2 variables $\Rightarrow x_1x_2$

$$f(x_2x_1x_0) = \overline{x_2}x_0 + \overline{x_1}x_2$$

Simplificación FC incompletamente definidas

Ej.2: $f(x_3x_2x_1x_0)=\sum m(2,5,8,12,14)+\sum d(0,9,11,13,15)$

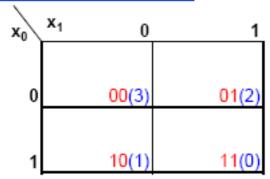


- n=4 ∧ r=2 ⇒ 2 variables ⇒ x₃x₂
- n=4 ∧ r=2 ⇒ 2 variables ⇒ x₃x₁
- n=4 \wedge r=1 \Rightarrow 3 variables $\Rightarrow \overline{x_3 x_2 x_0} \overline{x_1} x_0 x_2$

$$f(x_3x_2x_1x_0) = \overline{x_3x_2x_0 + x_2x_1x_0 + x_3x_2 + x_3x_1}$$

Mapas de Karnaugh (maxitérminos)

2 variables

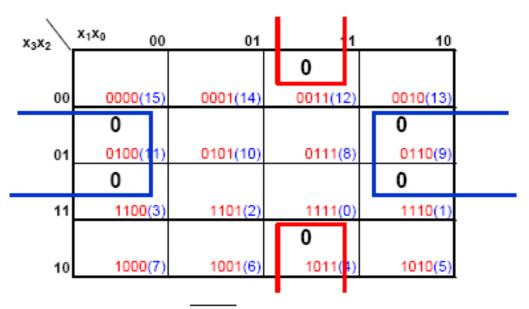


4 variables

x_3x_2	X ₁ X ₀ 00	01	11	10
00	0000(15)	0001(14)	0011(12)	0010(13)
	()			2012(12)
01	0100(11)	0101(10)	0111(8)	0110(9)
11	1100(3)	1101(2)	1111(0)	1110(1)
10	1000(7)	1001(6)	1011(4)	1010(5)

Mapas de Karnaugh (maxitérminos)

Ej.3:
$$f(x_3x_2x_1x_0) = \prod (1,3,4,9,11,12)$$



- n=4 ∧ r=2 ⇒ 2 variables ⇒ x₂ +x₀
- n=4 \wedge r=1 \Rightarrow 3 variables $\Rightarrow x_2 + x_1 + x_0$

$$f(x_3, x_2, x_1, x_0) = (\overline{x_2} + x_0) \cdot (x_2 + \overline{x_1} + \overline{x_0})$$

Ejercicio 4.5

$$f(x_2x_1x_0) = \sum m(0,6,7) + \sum d(1,2,5) = \overline{x_2}\overline{x_1}\overline{x_0} + x_2x_1\overline{x_0} + x_2x_1x_0$$

X_2	X ₁	X _O	f
0 X ₂	0	0 0	1
0	0	1	σ
0	1	0	a
0	1	1	0
1	0	0	0
1	0	1	a
1	1	0	1
1	1	1	1

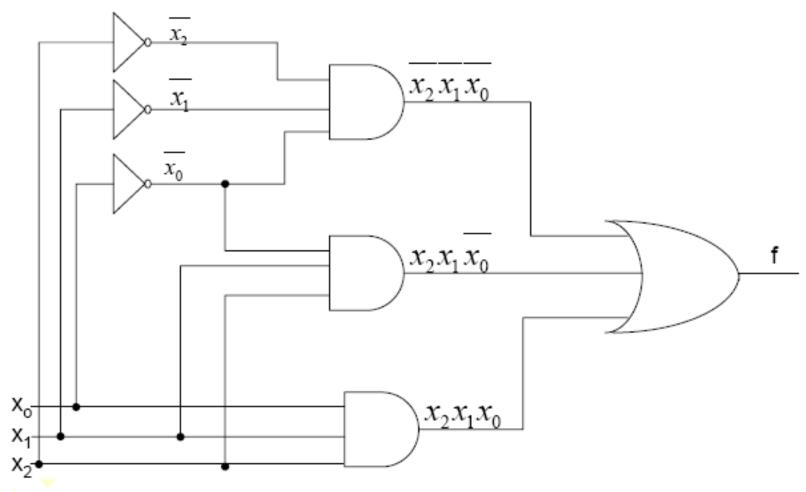
X ₂	X_1X_0	00	01	11			10
	1		d			d	
0	000	0(0)	0001(1)	0011(3)	L	0010	(2)
			d	1		1	$\ \ $
1	010	0(4)	0101(5)	0111(7)		0110	(6)

- n=3 ∧ r=1 ⇒ 2 variables ⇒ x₂x₀
- n=3 ∧ r=1 ⇒ 2 variables ⇒ X₂X₁

$$f(x_2x_1x_0) = \overline{x_2}\overline{x_0} + x_2x_1$$

Ejercicio 4.5. Diseño con puertas lógicas

$$f(x_2x_1x_0) = \sum m(0,6,7) + \sum d(1,2,5) = \overline{x_2}\overline{x_1}\overline{x_0} + x_2x_1\overline{x_0} + x_2x_1x_0$$



Ej.4.5. Diseño simplificado con puertas lógicas

$$f(x_2x_1x_0) = \overline{x_2}\,\overline{x_0} + x_2x_1$$

