

Exercise 12.4

The use of many different utility classes is actually quite good. The alternative would
have been to write our own similar functionality, and that would be a waste when it is
already there.

A HashMap does not have the method tailMap() which is used in the search()
method, so we can not replace the TreeMap with a HashMap.

Exercise 12.5

Add the following to the run method of AddressBookTextInterface:

 else if(command.equals("get")) {
 get();
 }
 else if(command.equals("remove")) {
 remove();
 }

and implementations of the get and remove methods:

 private void get()
 {
 System.out.print("Key: ");
 String key = parser.readLine();
 ContactDetails details = book.getDetails(key);

 if(details != null) {
 System.out.println(details);
 }
 else {
 System.out.println("No details matching " + key + " were
found.");
 }
 }

 private void remove()
 {
 System.out.print("Key: ");
 String key = parser.readLine();
 book.removeDetails(key);
 System.out.println("Details matching " + key + " were
removed.");
 }

Exercise 12.6

It would be more appropiate to calculate the value. If we calculate the value, we don't
have to remember to increase and decrease the value.

One example where it fails is if we accidently put in the same contact details twice,
then it would incorrectly increment the numberOfEntries twice. Another is if a set of

details is only entered under a single key.

Exercise 12.7

It throws an error:

java.lang.NullPointerException
at AddressBook.removeDetails

Exercise 12.8

If software controlling an aircraft's systems simply crashed it may well leave the
pilots with no control over the aircraft.

Exercise 12.10

The modified method:

 public void removeDetails(String key)
 {
 ContactDetails details = book.get(key);
 if(details != null) {
 book.remove(details.getName());
 book.remove(details.getPhone());
 numberOfEntries--;
 }
 }

Exercise 12.11

It depends... but it might be a good idea to report the error, as it is likely that the client
of the removeDetails actually thought that the key was there.

It could be reported with a return value which could be checked by the client.

Exercise 12.12

See section 12.2.2 in the book.

Exercise 12.13

getDetails and keyInUse does not result in any errors no matter what arguments we
give them. The results returned are able to indicate unambiguously both success and
failure.

Exercise 12.14

Amongst other things, if there is no user interface then printed error messages are
pointless.

Exercise 12.18

Yes, the output should be different. The graphical version should pop up a window
and the text based version should print out a string.

Exercise 12.19

Yes, at least one of the arguments name and phone should contain a valid string. If
both of them are null or empty there is no key available to look up the address. If the
name and phone are identical strings then this might result in implementation errors.

Exercise 12.20

No. A search for something should be expected not to find any matches.

Exercise 12.21

A constructor can not return any values to indicate an error. One way it could be
solved is to use unchecked exceptions which is discussed in the next section of the
book.

Exercise 12.22

CharConversionException
EOFException
FileNotFoundException
InterruptedIOException
InvalidClassException
InvalidObjectException
IOException
NotActiveException
NotSerializableException
ObjectStreamException
OptionalDataException
StreamCorruptedException
SyncFailedException
UnsupportedEncodingException
UTFDataFormatException
WriteAbortedException

Exercise 12.23

SecurityException is an unchecked exception.

Exercise 12.24

See the project address-book-v3t.

Exercise 12.26

The revised removeDetails method:

 /**
 * Remove the entry with the given key from the address book.
 * The key should be one that is currently in use.
 * @param key One of the keys of the entry to be removed.
 * @throws IllegalArgumentException If the key is null.
 * @throws NoMatchingDetailsException If the key does not match
 * any details in the address book.
 */
 public void removeDetails(String key) throws
NoMatchingDetailsException
 {
 if(key == null){
 throw new IllegalArgumentException("Null key passed to
removeDetails.");
 }
 if(keyInUse(key)) {
 ContactDetails details = book.get(key);
 book.remove(details.getName());
 book.remove(details.getPhone());
 numberOfEntries--;
 }
 else {
 throw new NoMatchingDetailsException(key);
 }
 }

Note that the changeDetails method will also need altering because it calls
removeDetails which throws a checked exception.

Exercise 12.27

The remove method from AddressBookTextInterface:

 /**
 * Remove an entry matching a key.
 */
 private void remove()
 {

 System.out.println("Type the key of the entry.");
 String key = parser.readLine();
 try {
 book.removeDetails(key);
 }
 catch(NoMatchingDetailsException e) {
 System.out.println("No details were found matching " +
e.getKey());
 }
 }

Exercise 12.28

This is bad for at least three reasons:

1. It is catching all Exceptions (even unchecked exceptions are caught). It should
be more specific.

2. It does nothing in the exception handling block to either alert to the error or
correct it.

3. The actions after the try statement assume that the lookup worked, regardless
of whether it did or not.

Exercise 12.30

All exceptions are caught by the first catch because Exception is a supertype of all
other exception types, so it can never reach the error handling for unchecked
exceptions (RuntimeException).

Exercise 12.34

testForAdditionError() results in an assertion failure. Note that the BlueJ
environment must be configured to enable assertions at runtime. See the
enableassertions option in the Java tools documentation and Appendix A for how to
configure BlueJ.

Exercise 12.35

Yes, it should have a consistency check because we might change something into a
key that already exists, and thereby decreasing the count.

Exercise 12.36

It fails at the consistentSize assertion in the removeDetails because it does not remove
entry which uses the address as the key.

Exercise 12.37

If you could change the phone number of a ContactDetails the phone number used as
key in the book is no longer correct. This could result in problems in the methods that
uses the phone number as the key.

Exercise 12.38

 /**
 * Write the notebook to the given file.
 * @param filename Where to write the notes.
 * @return true on success, false on failure.
 */
 public boolean writeToFile(String filename)
 {
 // Whether the write succeeded or not.
 boolean ok;
 try {
 FileWriter writer = new FileWriter(filename);
 for(String note : notes) {
 writer.write(note);
 writer.write('\n');
 }
 writer.close();
 ok = true;
 }
 catch(IOException e) {
 ok = false;
 }
 return ok;
 }

Exercise 12.40

 /**
 * Read notes from the given file.
 * @param filename Where to read the notes from.
 * @return true on success, false on failure.
 */
 public boolean readFromFile(String filename)
 {
 // Whether the read succeeded or not.
 boolean ok;
 try {
 BufferedReader reader =
 new BufferedReader(new FileReader(filename));
 String line = reader.readLine();
 while(line != null) {
 notes.add(line);
 line = reader.readLine();
 }
 reader.close();
 ok = true;
 }
 catch(FileNotFoundException e) {
 ok = false;
 }

 catch(IOException e) {
 ok = false;
 }
 return ok;
 }

Exercise 12.43

You can use the method isDirectory() on the File object.

Exercise 12.44

Not much is available about the contents of a file through the File obejct. However,
you can get the size of the file in bytes via the method length().

Exercise 12.45

Add the following:

 File fileDetails = new File(filename);
 if(fileDetails.exists() && fileDetails.canRead() &&
fileDetails.length() > 0) {

Passing these checks makes no difference to the need to deal with exceptions.

Exercise 12.47

 BigDecimal nextBigDecimal()
 Scans the next token of the input as a BigDecimal.
 BigInteger nextBigInteger()
 Scans the next token of the input as a BigInteger.
 BigInteger nextBigInteger(int radix)
 Scans the next token of the input as a BigInteger.
 boolean nextBoolean()
 Scans the next token of the input into a boolean value and
returns that value.
 byte nextByte()
 Scans the next token of the input as a byte.
 byte nextByte(int radix)
 Scans the next token of the input as a byte.
 double nextDouble()
 Scans the next token of the input as a double.
 float nextFloat()
 Scans the next token of the input as a float.
 int nextInt()
 Scans the next token of the input as an int.
 int nextInt(int radix)
 Scans the next token of the input as an int.
 String nextLine()

 Advances this scanner past the current line and returns the
input that was skipped.
 long nextLong()
 Scans the next token of the input as a long.
 long nextLong(int radix)
 Scans the next token of the input as a long.
 short nextShort()
 Scans the next token of the input as a short.
 short nextShort(int radix)

Exercise 12.49

If you get the input from a source that does not give you back a stream, channel or
file, a String will in most cases be available. For instance if you get the text out of a
graphical Swing component (like JTextField and JTextField). A Scanner is able to
parse this text in the same way that it can the contents of a file.

Exercise 12.50

Both String and ArrayList are already serializable, so it is only necessary to add
implements Serializable to the class header of Notebook.

Exercise 12.52

As serialized objects may be inconsistent with a new version of a class an
InvalidClassException may be thrown.

