CHAPTER 5

Analog Transmission

Solutions to Odd-Numbered Review Questions and Exercises

Review Questions

- 1. Normally, *analog transmission* refers to the transmission of analog signals using a band-pass channel. Baseband digital or analog signals are converted to a complex analog signal with a range of frequencies suitable for the channel.
- 3. The process of changing one of the characteristics of an analog signal based on the information in digital data is called *digital-to-analog conversion*. It is also called modulation of a digital signal. The baseband digital signal representing the digital data modulates the carrier to create a broadband analog signal.
- 5. We can say that the most susceptible technique is *ASK* because the amplitude is more affected by noise than the phase or frequency.
- 7. The two components of a signal are called I and Q. The I component, called inphase, is shown on the horizontal axis; the Q component, called quadrature, is shown on the vertical axis.
- 9.
- a. AM changes the *amplitude* of the carrier
- b. FM changes the *frequency* of the carrier
- c. PM changes the *phase* of the carrier

Exercises

11. We use the formula $\mathbf{S} = (\mathbf{1/r}) \times \mathbf{N}$, but first we need to calculate the value of r for each case.

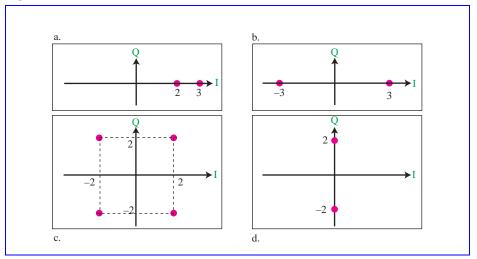
a. $r = \log_2 2$	= 1	\rightarrow	$S = (1/1) \times (2000 \text{ bps})$	= 2000 baud
b. $r = \log_2 2$	= 1	\rightarrow	$S = (1/1) \times (4000 \text{ bps})$	= 4000 baud
c. $r = \log_2 4$	= 2	\rightarrow	$S = (1/2) \times (6000 \text{ bps})$	= 3000 baud
d. $r = \log_2 64$	= 6	\rightarrow	$S = (1/6) \times (36,000 \text{ bps})$	= 6000 baud

13. We use the formula $\mathbf{r} = \log_2 \mathbf{L}$ to calculate the value of r for each case.

= 2
= 3
= 2
= 7

15. See Figure 5.1

Figure 5.1 Solution to Exercise 15



- a. This is ASK. There are two peak amplitudes both with the same phase (0 degrees). The values of the peak amplitudes are $A_1 = 2$ (the distance between the first dot and the origin) and $A_2 = 3$ (the distance between the second dot and the origin).
- b. This is BPSK, There is only one peak amplitude (3). The distance between each dot and the origin is 3. However, we have two phases, 0 and 180 degrees.
- c. This can be either QPSK (one amplitude, four phases) or 4-QAM (one amplitude and four phases). The amplitude is the distance between a point and the origin, which is $(2^2 + 2^2)^{1/2} = 2.83$.
- d. This is also BPSK. The peak amplitude is 2, but this time the phases are 90 and 270 degrees.
- 17. We use the formula $\mathbf{B} = (\mathbf{1} + \mathbf{d}) \times (\mathbf{1/r}) \times \mathbf{N}$, but first we need to calculate the value of r for each case.

a. r = 1	\rightarrow	$B = (1 + 1) \times (1/1) \times (4000 \text{ bps})$	= 8000 Hz
b. r = 1	\rightarrow	$B = (1 + 1) \times (1/1) \times (4000 \text{ bps}) + 4 \text{ KHz}$	= 8000 Hz
c. r = 2	\rightarrow	$B = (1 + 1) \times (1/2) \times (4000 \text{ bps})$	= 2000 Hz
d. r = 4	\rightarrow	$B = (1 + 1) \times (1/4) \times (4000 \text{ bps})$	= 1000 Hz

First, we calculate the bandwidth for each channel = (1 MHz) / 10 = 100 KHz. We then find the value of r for each channel:

$$B = (1 + d) \times (1/r) \times (N) \rightarrow r = N / B \rightarrow r = (1 \text{ Mbps}/100 \text{ KHz}) = 10$$

We can then calculate the number of levels: $L = 2^r = 2^{10} = 1024$. This means that that we need a 1024-QAM technique to achieve this data rate.

21.

a. $B_{AM} = 2 \times B = 2 \times 5$	= 10 KHz
b. $B_{FM} = 2 \times (1 + \beta) \times B = 2 \times (1 + 5) \times 5$	= 60 KHz
c. $B_{PM} = 2 \times (1 + \beta) \times B = 2 \times (1 + 1) \times 5$	= 20 KHz