CHAPTER 7

Transmission Media

Solutions to Odd-Numbered Review Questions and Exercises

Review Questions

- 1. The *transmission media* is located *beneath the physical layer* and controlled by the physical layer.
- 3. Guided media have physical boundaries, while unguided media are unbounded.
- 5. *Twisting* ensures that both wires are equally, but *inversely*, affected by external influences such as noise.
- 7. The *inner core* of an optical fiber is surrounded by *cladding*. The core is denser than the cladding, so a light beam traveling through the core is reflected at the boundary between the core and the cladding if the incident angle is more than the critical angle.
- 9. In *sky propagation* radio waves radiate upward into the ionosphere and are then reflected back to earth. In *line-of-sight propagation* signals are transmitted in a straight line from antenna to antenna.

Exercises

11. See Table 7.1 (the values are approximate).

Table 7.1Solution to Exercise 11

Distance	dB at 1 KHz	dB at 10 KHz	dB at 100 KHz
1 Km	-3	-5	-7
10 Km	-30	-50	-70
15 Km	-45	-75	-105
20 Km	-60	-100	-140

13. We can use Table 7.1 to find the power for different frequencies:

1 KHz	dB = -3	$P_2 = P_1 \times 10^{-3/10}$	= 100.23 mw
10 KHz	dB = -5	$P_2 = P_1 \times 10^{-5/10}$	= 63.25 mw

100 KHz dB = -7 $P_2 = P_1 \times 10^{-7/10} = 39.90$ mw

The table shows that the power for 100 KHz is reduced almost 5 times, which may not be acceptable for some applications.

15. We first make Table 7.2 from Figure 7.9 (in the textbook).

 Table 7.2
 Solution to Exercise 15

Distance	dB at 1 KHz	dB at 10 KHz	dB at 100 KHz
1 Km	-3	-7	-20
10 Km	-30	-70	-200
15 Km	-45	-105	-300
20 Km	-60	-140	-400

If we consider the bandwidth to start from zero, we can say that the bandwidth decreases with distance. For example, if we can tolerate a maximum attenuation of -50 dB (loss), then we can give the following listing of distance versus bandwidth.

Distance	Bandwidth	
1 Km	100 KHz	
10 Km	1 KHz	
15 Km	1 KHz	
20 Km	0 KHz	

- 17. We can use the formula $f = c / \lambda$ to find the corresponding frequency for each wave length as shown below (c is the speed of propagation):
 - a. B = $[(2 \times 10^8)/1000 \times 10^{-9}] [(2 \times 10^8)/1200 \times 10^{-9}] = 33$ THz
 - **b.** B = $[(2 \times 10^8)/1000 \times 10^{-9}] [(2 \times 10^8)/1400 \times 10^{-9}] = 57$ THz
- 19. See Table 7.3 (The values are approximate).

Table 7.3	Solution to Exercise 19

Distance	dB at 800 nm	dB at 1000 nm	dB at 1200 nm
1 Km	-3	-1.1	-0.5
10 Km	-30	-11	-5
15 Km	-45	-16.5	-7.5
20 Km	-60	-22	-10

- 21. See Figure 7.1.
 - a. The incident angle (40 degrees) is smaller than the critical angle (60 degrees).
 We have *refraction*. The light ray enters into the less dense medium.
 - b. The incident angle (60 degrees) is the same as the critical angle (60 degrees). We have *refraction*. The light ray travels along the interface.

Figure 7.1 Solution to Exercise 21

c. The incident angle (80 degrees) is greater than the critical angle (60 degrees). We have *reflection*. The light ray returns back to the more dense medium.