
CHAPTER 11

Data Link Control
Solutions to Odd-Numbered Review Questions and Exercises
Review Questions
1. The two main functions of the data link layer are data link control and media

access control. Data link control deals with the design and procedures for commu-
nication between two adjacent nodes: node-to-node communication. Media access
control deals with procedures for sharing the link.

3. In a byte-oriented protocol, data to be carried are 8-bit characters from a coding
system. Character-oriented protocols were popular when only text was exchanged
by the data link layers. In a bit-oriented protocol, the data section of a frame is a
sequence of bits. Bit-oriented protocols are more popular today because we need to
send text, graphic, audio, and video which can be better represented by a bit pat-
tern than a sequence of characters.

5. Flow control refers to a set of procedures used to restrict the amount of data that
the sender can send before waiting for acknowledgment. Error control refers to a
set of procedures used to detect and correct errors.

7. In this chapter, we discussed three protocols for noisy channels: the Stop-and-Wait
ARQ, the Go-Back-N ARQ, and the Selective-Repeat ARQ.

9. In the Go-Back-N ARQ Protocol, we can send several frames before receiving
acknowledgments. If a frame is lost or damaged, all outstanding frames sent before
that frame are resent. In the Selective- Repeat ARQ protocol we avoid unnecessary
transmission by sending only the frames that are corrupted or missing. Both Go-
Back-N and Selective-Repeat Protocols use sliding windows. In Go-Back-N ARQ,
if m is the number of bits for the sequence number, then the size of the send win-
dow must be at most 2m−1; the size of the receiver window is always 1. In Selec-
tive-Repeat ARQ, the size of the sender and receiver window must be at most 2m−1.

11. Piggybacking is used to improve the efficiency of bidirectional transmission.
When a frame is carrying data from A to B, it can also carry control information
about frames from B; when a frame is carrying data from B to A, it can also carry
control information about frames from A.
1

2

Exercises
13. We give a very simple solution. Every time we encounter an ESC or flag character,

we insert an extra ESC character in the data part of the frame (see Figure 11.1).

15. We write two very simple algorithms. We assume that a frame is made of a one-
byte beginning flag, variable-length data (possibly byte-stuffed), and a one-byte
ending flag; we ignore the header and trailer. We also assume that there is no error
during the transmission.
a. Algorithm 11.1 can be used at the sender site. It inserts one ESC character

whenever a flag or ESC character is encountered.

b. Algorithm 11.2 can be used at the receiver site.

17. A five-bit sequence number can create sequence numbers from 0 to 31. The
sequence number in the Nth packet is (N mod 32). This means that the 101th
packet has the sequence number (101 mod 32) or 5.

Figure 11.1 Solution to Exercise 13

Algorithm 11.1 Sender’s site solution to Exercise 15
InsertFrame (one-byte flag); // Insert beginning flag
while (more characters in data buffer)
{
 ExtractBuffer (character);
 if (character is flag or ESC) InsertFrame (ESC); // Byte stuff
 InsertFrame (character);
}
InsertFrame (one-byte flag); // Insert ending flag

Algorithm 11.2 Receiver’s site solution to Exercise 15
ExtractFrame (character); // Extract beginning flag
Discard (character); // Discard beginning flag
while (more characters in the frame)
{
 ExtractFrame (character);
 if (character = = flag) exit(); // Ending flag is extracted

 if (character = = ESC)
 {
 Discard (character); // Un-stuff
 ExtractFrame (character); // Extract flag or ESC as data
 }
 InsertBuffer (character);
}
Discard (character); // Discard ending flag

FlagESCESC ESC ESC ESC ESC ESC FlagESC ESC ESC

3

19. See Algorithm 11.3. Note that we have assumed that both events (request and
arrival) have the same priority.

21. Algorithm 11.4 shows one design. This is a very simple implementation in which
we assume that both sites always have data to send.

Algorithm 11.3 Algorithm for bidirectional Simplest Protocol
while (true) // Repeat forever
{
 WaitForEvent (); // Sleep until an event occurs
 if (Event (RequestToSend)) // There is a packet to send
 {
 GetData ();
 MakeFrame ();
 SendFrame (); // Send the frame
 }

 if (Event (ArrivalNotification)) // Data frame arrived
 {
 ReceiveFrame ();
 ExtractData ();
 DeliverData (); // Deliver data to network layer
 }
} // End Repeat forever

Algorithm 11.4 A bidirectional algorithm for Stop-And-Wait ARQ
Sn = 0; // Frame 0 should be sent first
Rn = 0; // Frame 0 expected to arrive first
canSend = true; // Allow the first request to go
while (true) // Repeat forever
{
 WaitForEvent (); // Sleep until an event occurs
 if (Event (RequestToSend) AND canSend) // Packet to send
 {
 GetData ();
 MakeFrame (Sn , Rn); // The seqNo of frame is Sn
 StoreFrame (Sn , Rn); //Keep copy for possible resending
 SendFrame (Sn , Rn);
 StartTimer ();
 Sn = (Sn + 1) mod 2;
 canSend = false;
 }

 if (Event (ArrivalNotification)) // Data frame arrives
 {
 ReceiveFrame ();
 if (corrupted (frame)) sleep();
 if (seqNo = = Rn) // Valid data frame
 {
 ExtractData ();
 DeliverData (); // Deliver data
 Rn = (Rn + 1) mod 2;
 }
 if (ackNo = = Sn) // Valid ACK

4

23. Algorithm 11.5 shows one design. This is a very simple implementation in which
we assume that both sites always have data to send.

 {
 StopTimer ();
 PurgeFrame (Sn−1 , Rn−1); //Copy is not needed
 canSend = true;
 }
 }

 if (Event(TimeOut)) // The timer expired
 {
 StartTimer ();
 ResendFrame (Sn-1 , Rn-1); // Resend a copy
 }
} // End Repeat forever

Algorithm 11.5 A bidirectional algorithm for Selective-Repeat ARQ
Sw = 2m−1;
Sf = 0;
Sn = 0;
Rn = 0;
NakSent = false;
AckNeeded = false;
Repeat (for all slots);
Marked (slot) = false;
 while (true) // Repeat forever
 {
 WaitForEvent ();
 if (Event (RequestToSend)) // There is a packet to send
 {
 if (Sn−Sf >= Sw) Sleep (); // If window is full
 GetData ();
 MakeFrame (Sn , Rn);
 StoreFrame (Sn , Rn);
 SendFrame (Sn , Rn);
 Sn = Sn + 1;
 StartTimer (Sn);
 }

 if (Event (ArrivalNotification))
 {
 Receive (frame); // Receive Data or NAK
 if (FrameType is NAK)
 {
 if (corrupted (frame)) Sleep();
 if (nakNo between Sf and Sn)
 {
 resend (nakNo);
 StartTimer (nakNo);
 }
 }

Algorithm 11.4 A bidirectional algorithm for Stop-And-Wait ARQ

5

25. State Rn = 0 means the receiver is waiting for Frame 0. State Rn = 1 means the
receiver is waiting for Frame 1. We can then say

 if (FrameType is Data)
 {
 if (corrupted (Frame)) AND (NOT NakSent)
 {
 SendNAK (Rn);
 NakSent = true;
 Sleep();
 }

 if (ackNo between Sf and Sn)
 {
 while (Sf < ackNo)
 {
 Purge (Sf);
 StopTimer (Sf);
 Sf = Sf + 1;
 }
 }

 if ((seqNo <> Rn) AND (NOT NakSent))
 {
 SendNAK (Rn);
 NakSent = true;
 }

 if ((seqNo in window) AND (NOT Marked (seqNo))
 {
 StoreFrame (seqNo);
 Marked (seqNo) = true;
 while (Marked (Rn))
 {
 DeliverData (Rn);
 Purge (Rn);
 Rn = Rn + 1;
 AckNeeded = true;
 }
 }
 } // End if (FrameType is Data)
 } // End if (arrival event)

 if (Event (TimeOut (t))) // The timer expires
 {
 StartTimer (t);
 SendFrame (t);
 }
} // End Repeat forever

Event A: Receiver Site: Frame 0 received.
Event B: Receiver Site: Frame 1 received.

Algorithm 11.5 A bidirectional algorithm for Selective-Repeat ARQ

6

27. Figure 11.2 shows the situation. Since there are no lost or damaged frames and the
round trip time is less than the time-out, each frame is sent only once.

29. Figure 11.3 shows the situation. In this case, only the first frame is resent; the
acknowledgment for other frames arrived on time.

31. In the worst case, we send the a full window of size 7 and then wait for the
acknowledgment of the whole window. We need to send 1000/7 ≈ 143 windows.
We ignore the overhead due to the header and trailer.

Figure 11.2 Solution to Exercise 27

Figure 11.3 Solution to Exercise 29

Transmission time for one window = 7000 bits / 1,000,000 bits = 7 ms
Data frame trip time = 5000 km / 200,000 km = 25 ms
ACK transmission time = 0 (It is usually negligible)
ACK trip time = 5000 km / 200,000 km = 25 ms

Frame 0

ACK 1

Frame 1

Sender ReceiverA B

Start

Stop
4 ms

Start

Stop
4 ms

Start

Stop
4 ms

Start

Stop
4 ms

Frame 0

Frame 1

ACK 0

ACK 0

ACK 1

Frame 0

Frame 1

Sender ReceiverA B

Start

Stop

Stop

4 ms

4 ms

Start

Stop
4 ms

Start

Stop
4 ms

Frame 0

Frame 1

ACK 0

Frame 0

ACK 0

ACK 1

ACK 1

Start

Time-out, restart

6 ms

7

Delay for 1 window = 7 + 25 + 25 = 57 ms.
Total delay = 143 × 57 ms = 8.151 s

8

	Chapter 11
	Data Link Control Solutions to Odd-Numbered Review Questions and Exercises
	Review Questions
	1. The two main functions of the data link layer are data link control and media access control. Data link control deals with th...
	3. In a byte-oriented protocol, data to be carried are 8-bit characters from a coding system. Character-oriented protocols were ...
	5. Flow control refers to a set of procedures used to restrict the amount of data that the sender can send before waiting for acknowledgment. Error control refers to a set of procedures used to detect and correct errors.
	7. In this chapter, we discussed three protocols for noisy channels: the Stop-and-Wait ARQ, the Go-Back-N ARQ, and the Selective-Repeat ARQ.
	9. In the Go-Back-N ARQ Protocol, we can send several frames before receiving acknowledgments. If a frame is lost or damaged, al...
	11. Piggybacking is used to improve the efficiency of bidirectional transmission. When a frame is carrying data from A to B, it ...

	Exercises
	13. We give a very simple solution. Every time we encounter an ESC or flag character, we insert an extra ESC character in the data part of the frame (see Figure 11.1).
	Figure 11.1 Solution to Exercise 13

	15. We write two very simple algorithms. We assume that a frame is made of a one- byte beginning flag, variable-length data (pos...
	a. Algorithm 11.1 can be used at the sender site. It inserts one ESC character whenever a flag or ESC character is encountered.

	Algorithm 11.1 Sender’s site solution to Exercise 15
	b. Algorithm 11.2 can be used at the receiver site.

	Algorithm 11.2 Receiver’s site solution to Exercise 15
	17. A five-bit sequence number can create sequence numbers from 0 to 31. The sequence number in the Nth packet is (N mod 32). This means that the 101th packet has the sequence number (101 mod 32) or 5.
	19. See Algorithm 11.3. Note that we have assumed that both events (request and arrival) have the same priority.

	Algorithm 11.3 Algorithm for bidirectional Simplest Protocol
	21. Algorithm 11.4 shows one design. This is a very simple implementation in which we assume that both sites always have data to send.

	Algorithm 11.4 A bidirectional algorithm for Stop-And-Wait ARQ
	23. Algorithm 11.5 shows one design. This is a very simple implementation in which we assume that both sites always have data to send.

	Algorithm 11.5 A bidirectional algorithm for Selective-Repeat ARQ
	25. State Rn = 0 means the receiver is waiting for Frame 0. State Rn = 1 means the receiver is waiting for Frame 1. We can then say
	27. Figure 11.2 shows the situation. Since there are no lost or damaged frames and the round trip time is less than the time-out, each frame is sent only once.
	Figure 11.2 Solution to Exercise 27

	29. Figure 11.3 shows the situation. In this case, only the first frame is resent; the acknowledgment for other frames arrived on time.
	Figure 11.3 Solution to Exercise 29

	31. In the worst case, we send the a full window of size 7 and then wait for the acknowledgment of the whole window. We need to send 1000/7 ª 143 windows. We ignore the overhead due to the header and trailer.

