

Redes de Datos

Tema IX: Redes LAN

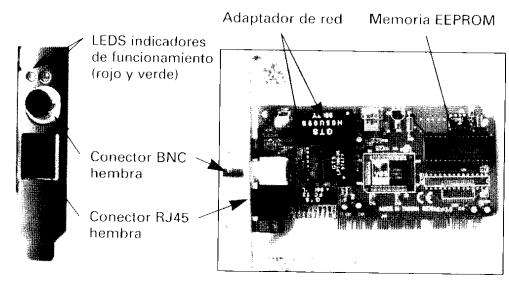
- Topologías
- Control de acceso al medio
- •Interconexión de redes
- •Redes de alta velocidad

Redes Locales

- El término red local incluye
 - ✓ el hardware y el software necesarios para la conexión de los dispositivos y para el tratamiento de la información.
- El término local hace referencia a un ámbito reducido
 - ✓ Un edifico de oficinas, una empresa, un campus...
- La propiedad de los medios de comunicación
 ✓ privada
- http://vgg.sci.uma.es/redes/

Características de las redes locales

- La zona que cubre.
 - ✓ Alcance geográfico reducido. (< 5 Km).</p>
- La alta velocidad y baja tasa de errores.
- Uso de topologías regulares
- Propiedad de los medios: privados
- Posibilidad de interconexión entre redes

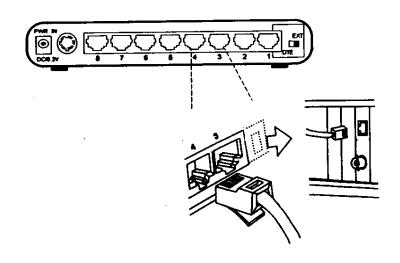

Elementos de una red local

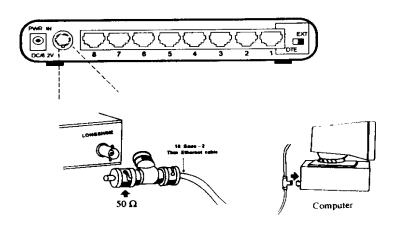
- Soporte hardware de comunicación de red local
 - ✓ Ordenadores.
 - ✓ Interfaces.
 - Definición:
 - Conjunto de normas que definen la interconexión entre dispositivos que pueden realizar funciones diferentes
 - Conectan los dispositivos a la red.
 - Ejemplos:
 - Tarjetas de red, Modem, Puerto de comunicaciones.
 - ✓ Medios de transmisión.
 - Proporciona el enlace físico que lleva la información de un punto a otro de la red. (canal, línea, circuito...)
 - ✓ Topología.
 - La forma física de interconexión entre los dispositivos de la red.

Tarjetas de interfaz de red

NICs - Network Interface Cards

- Son adaptadores
- Hace de interfaz entre el ordenador y el cable de red
- Operan a nivel de enlace del modelo OSI:
 - ✓ Transforma los datos en señales eléctricas
 - ✓ Dirección física
- El driver es componente lógico
 - ✓ Corresponde a las capas LLC y MAC

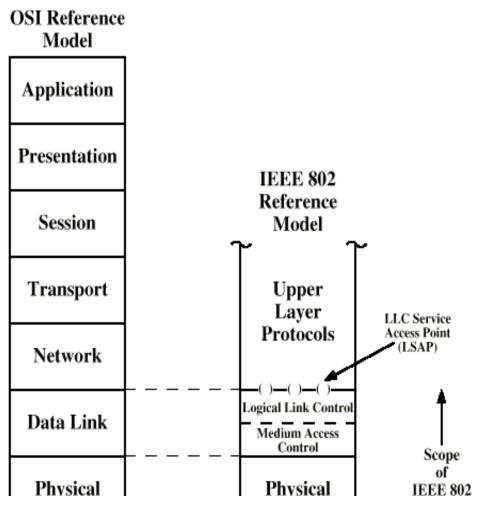


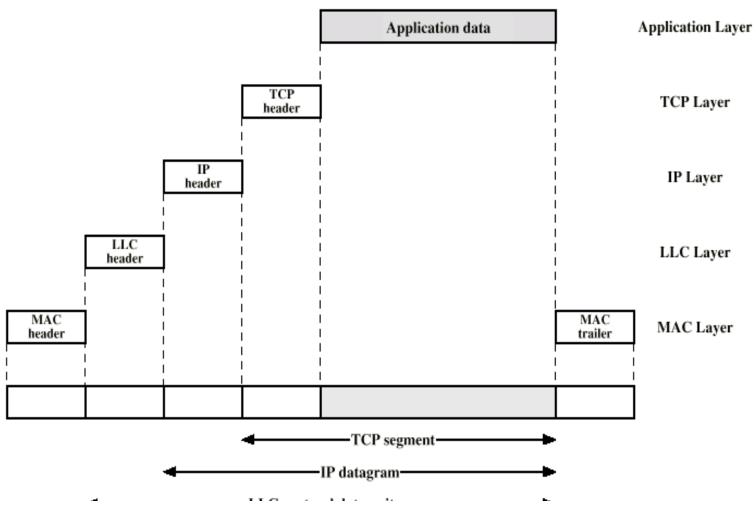

Controlador de red

Elementos de una tarjeta de red

Tipos de conectores

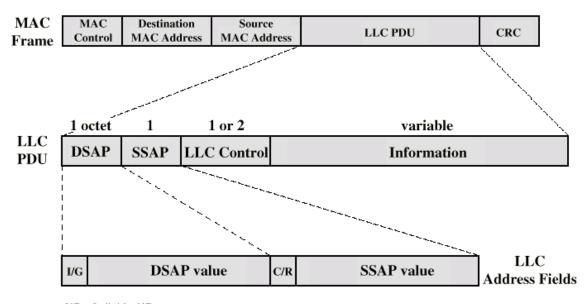
- RJ45 para par trenzado
- BNC (British Naval Connector)
 - ✓ Coaxial fino
- AUI (Access Unit Interface)
 - ✓ Ethernet grueso
- DB9
 - ✓ Token Ring
- ST
 - ✓ Fibra óptica en token Ring o ethernet
- MIC
 - √ Conector FDDI




Elementos de una red II

- Protocolo (considerado entre hardware y software)
 - ✓ Protocolo el conjunto de normas que regulan la comunicación (establecimiento, mantenimiento y cancelación) entre los distintos componentes de una red informática.
 - ✓ Tipos de protocolos
 - Los protocolos de bajo nivel
 - Controlan la forma en que las señales se transmiten por el cable o medio físico. los habitualmente utilizados en redes locales (Ethernet y Token Ring).
 - Los protocolos de red
 - Organizan la información (controles y datos) para su transmisión por el medio físico a través de los protocolos de bajo nivel. (IPX/SPX, DECnet, X.25, TCP/IP, AppleTalk, NetBEUI)
- Software de red
 - ✓ Sistema operativo de red.
 - ✓ Aplicaciones que funcionen en red.
 - ✓ Programas de utilidad de la red

Arquitectura: La norma LAN IEEE 802

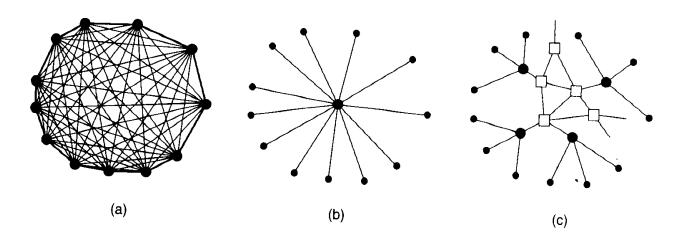


Tramas red local

Trama MAC

- Control MAC: Contiene información de control del protocolo
- Dirección MAC de destino: dirección de la tarjeta de red en la LAN de destino
- Dirección MAC de origen: dirección física de la LAN origen
- LLC: datos LLC de la capa inmediatamente superior
- CRC: detección de errores

Topologías


- Concepto de Topología:
 - ✓ La forma geométrica que forman la distribución de las estaciones de trabajo y los cables que las conectan
- Objetivo:
 - ✓ Conectar a todos los usuarios con todos los recursos de la red de la manera más económica y eficaz.
 - ✓ Con tiempo de espera suficientes
 - ✓ Garantizando la fiabilidad.
 - ✓ Con la mayor simplificación del conexionado y de encaminamiento

Formas de conexión

- Física:
 - ✓ Describe como está extendido el cableado. Es la topología física. Pueden ser:
 - Punto a punto: solo se unen dos estaciones adyacentes.
 - Multipunto: dos o más estaciones comparten un solo cable.
- Lógica:
 - ✓ Describe la que viajan las señales a través de la red. Es la topología lógica.
- Una red puede tener distinta topología física y lógica.
 - ✓ La forma que está cableada una red no tiene por qué refleja necesariamente la forma en que viajan las señales a través de ella

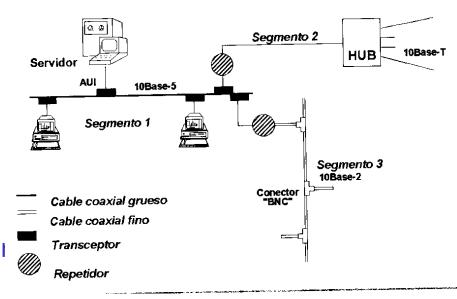
Tipos de topologías

- Topología de "todos con todos"
 - ✓ Conectamos cada nodo mediante una conexión punto a punto con todos los demás nodos de la red.
 - ✓ Las características de esta topología son:
 - Rápido e inmanejable crecimiento del número de conexiones: 1/2 n (n-1)
 - Coste y dificultad de ampliación.

Tipos topologías (II)

- Topología en malla (irregulares).
 - ✓ Los nodos de la red se unen entre sí formando una estructura en la que al menos existen dos rutas posibles para cada nodo.
 - Permiten comunicar a todos los nodos sin necesidad de la conexión total.
 - Es menos costosa.
 - Establece una jerarquía de nodos.
 - ✓ Complejidad de encaminamiento.
 - ✓ Común en redes de telecomunicación
- Topologías regulares:
 - ✓ Topología en bus o árbol.
 - ✓ Topología en anillo.
 - ✓ Topología en estrella

Topología bus

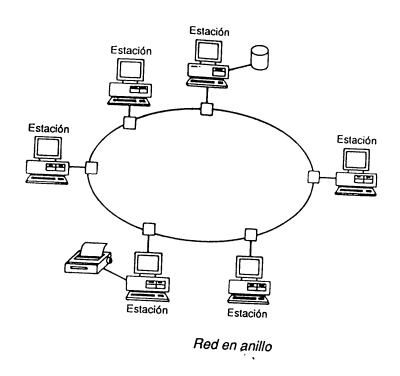

- Las estaciones están conectadas a un único canal de comunicaciones (bus).
- Cuando una estación transmite, su señal se propaga a ambos lados del emisor hacia todas las estaciones
- Cada estación reconoce su dirección y recoge la información que le corresponde.

Topología árbol

- Es una generalización de la topología en bus
- El cable se desdobla en varios ramales mediante el empleo de dispositivos de derivación.
 - ✓ Es una red que cuenta con un cable principal, al que hay conectadas redes individuales en bus.
- Las transmisiones se propagan por cada ramal de la red y llega a todas las estaciones.

ESQUEMA DE RED ETHERNET (BUS)

Tema IX

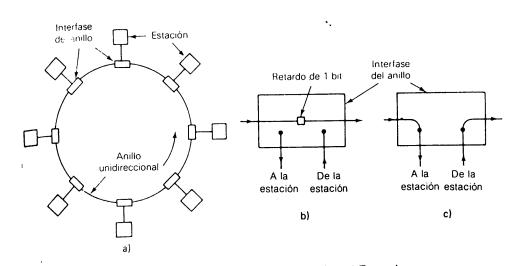

16

Características

- El medio de transmisión es totalmente pasivo.
- Es sencillo conectar nuevos dispositivos.
- Es flexible a la hora de aumentar o disminuir el número de estaciones.
- El fallo de una estación no repercute en la red.
- Se puede utilizar toda la capacidad de transmisión disponible.
- Es fácil de instalar.
- La ruptura de un cable dejará la red totalmente inutilizada

Topología en anillo

- Todas las estaciones están conectadas entre sí formando un anillo.
- Conexiones punto apunto de estaciones contiguas.
- Los mensajes se transmiten de una estación a otra a lo largo del anillo
- Las unidades están conectadas al cable por medio de una unidad de acceso

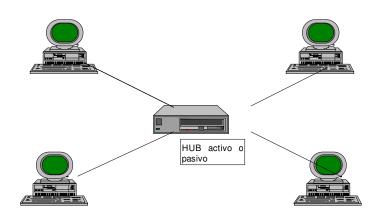

Tema IX

18

Topología anillo (II)

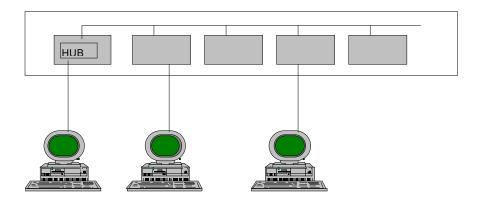
- Funciones de las estaciones:
 - ✓ Inserción de mensajes (control de acceso al medio).
 - ✓ Recepción de mensajes: reconocer su dirección.
 - ✓ Eliminación de mensajes

- Estados de una estación:
 - •Escucha:
 - Transmisión
 - •Bypass: Desconexión de la estación.

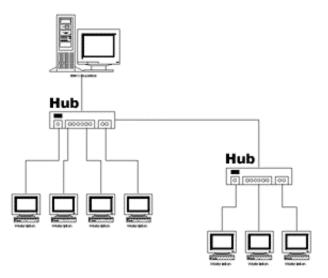

a) Una red en anillo. b) En modo para escuchar. c) En modo para trans-

mitir.

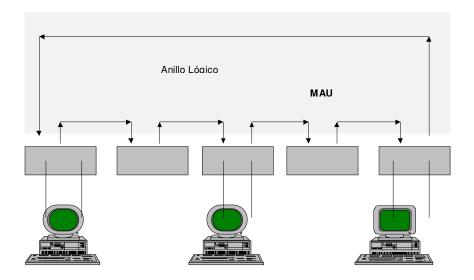
I ellia i A


Topología en estrella

- Cada estación está conectada a un nodo central
- El nodo central asume las funciones de gestión y control de las comunicaciones
- Características
 - ✓ Arquitectura centralizada.
 - ✓ Las estaciones pasan los mensajes al servidor central, y este lo trasmite a la estación a la que va dirigido.
- El control de la red puede estar:
 - √ 1.- El control reside en el nodo central.
 - ✓ 2.- El control está a cargo de una de las estaciones exteriores, en vez de la estación central.
 - √ 3.- El control está distribuido entre todas las estaciones.


Tipos de topologías estrella

- Topología En Estrella Pasiva
 - ✓ El punto central es un concentrador (hub) pasivo
- Topología de estrella activa
 - ✓ punto central un *hub* activo o bien un ordenador que hace las veces de servidor de red


Topologías lógicas

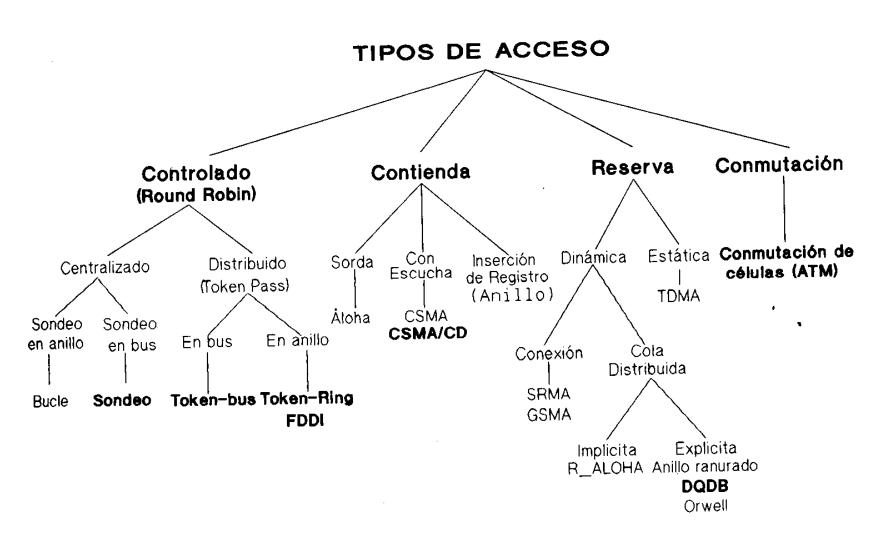
- Topología estrella-estrella
 - ✓ Una o varias conexiones en estrella mediante concentradores.
 - ✓ Topología física:estrella
 - ✓ Topología lógica: Bus

Topología Anillo estrella

 Las unidades se conectan mediante una unidad de acceso de manera que físicamente forman una estrella, si bien lógicamente forman un anillo.

Tema IX

23


Técnicas de acceso al medio

- Necesidad:
 - ✓ Cuando un único canal va a ser compartido por distintos usuarios.
- Los métodos (cómo) pueden clasificarse en:
 - ✓ Compartición
 - ✓ Repartición del medio
 - Los métodos de repartición no son adecuados para las redes locales.
- El tipo de control (dónde) puede realizarse de forma:
 - ✓ Centralizada
 - ✓ Distribuida

Clasificación

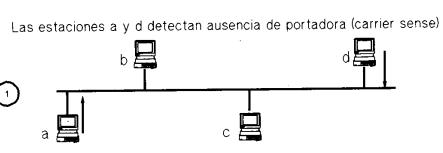
- Método de repartición con asignamiento fijo.
 - TDMA (acceso múltiple por división de tiempo).
 - FDMA (acceso múltiple por división de frecuencia).
- Método de Compartición
 - Asignamiento Aleatorio o contienda (Aloha, CSMA...)
 - Asignamiento Controlado (central, distribuido)
 - Asignamiento por reserva.

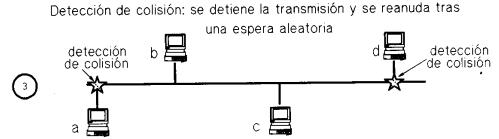
Clasificación

Protocolos de contienda

- Es un método de acceso a la línea basado en que el primero que llega es el que lo utiliza.
- No hay elemento de control ni testigo.
- Puede haber colisiones.
- Las transmisiones ocurren aleatoriamente.
- Todas las estaciones deben competir por el derecho de acceso.
- Las estaciones responden únicamente a aquellos que incluye su dirección, y el resto los ignora

Contienda simple


- 1 Las estaciones emiten mensajes sin mirar si el medio está ocupado o libre.
 - ✓ Si ya hay otro mensaje, se produce colisión ; el mensaje no llega al destinatario.
 - ✓ Si no ocurre colisión y el mensaje se recibe, la estación receptora emite un mensaje de confirmación.
- 2 La estación emisora espera la confirmación de la llegada de su mensaje.
 - ✓ Durante un tiempo igual al doble del tiempo máximo de propagación entre las estaciones mas separadas
- 3 Si no la obtienen esperan un tiempo aleatorio y retransmiten el mensaje.
- Estados:
 - ✓ Transmiten datos o se encuentra en estado de espera.
- Útil solo en sistemas con poco tráfico.
- Utilización máxima del canal 18%.
- Aloha ranurado,
 - ✓ Divide el tiempo de transmisión del canal a intervalos fijos de duración igual al tiempo de transmisión de la trama, y permitiendo transmitir solo al principio de cada uno de estos intervalos.
 - ✓ Llega al 36 %


Acceso múltiple por detección de portadora (CSMA)

- La estación escucha el medio emitiendo el mensaje sólo si está libre.
- La detección de si el medio está ocupado se puede hacer de dos formas:
 - ✓ Detección continua de portadora: Escucha continuamente a la espera de que quede libre y entonces transmite.
 - ✓ Detección no continua: escucha si el canal está ocupado. Si lo está, deja la transmisión un tiempo aleatorio y después vuelve a intentarlo.
- Cuando la línea está libre
 - ✓ Envía el bloque de datos y, además, otra señal en la frecuencia secundaria para advertir a las demás estaciones que está ocupada.
 - ✓ Si no hay confirmación retransmite el mensaje
- Estados: transmitiendo datos, en estado de espera o escuchando.
- Funciona mejor que el de contienda simple

Acceso múltiple por detección de portadora con detección de colisiones (CSMA/CD)

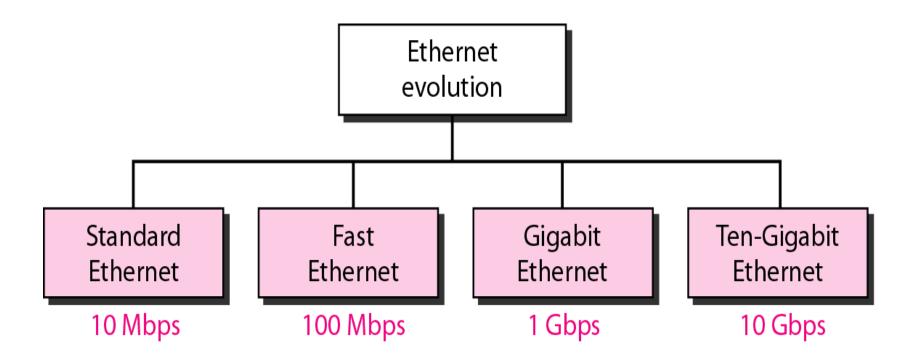
- Igual que el anterior pero sigue escuchando la línea.
 - ✓ Si detecta que se ha producido una colisión, espera un tiempo aleatorio y retransmite el mensaje.
 - ✓ Rendimiento mejor en redes de carga media y tamaño medio.
- Acceso múltiple por detección de portadora evitando colisiones. (CSMA/CA)
 - ✓ La estación escucha la línea.
 - Si está libre indica que desea transmitir un mensaje.
 - Si hay más de una estación que quieren transmitir, lo hacen por prioridad.

Acceso controlado

- Basadas en la filosofía de "conceder a cada uno una oportunidad".
 - ✓ Cada estación, por turnos, recibe el permiso para transmitir.
- Puede ser centralizado o distribuido
- Con Polling. Llamada selectiva. Centralizado.
 - ✓ Una red con polling tiene dos tipos de estaciones: La principal y las secundarias.
 - ✓ La estación principal comprueba cíclicamente y de acuerdo a una prioridad, a cada una de las secundarias para ver si alguna tiene algún bloque de datos que transmitir.
 - Si tiene algo que transmitir, lo autoriza.
 - Si no tiene nada que transmitir pasa a la siguiente estación.
 - ✓ Requiere un control centralizado. Permite trabajar con redes de mayor longitud que de contienda.
- De paso de testigo (Token passing) Distribuido

Acceso controlado de paso de testigo

- Descripción:
 - √ Hace circular continuamente un testigo
- Funcionamiento
 - ✓ Solo la estación que posee el testigo puede enviar un mensaje a través de la red.
 - ✓ Cuando una estación que desea transmitir recibe un testigo vacío, inserta los datos y la información necesaria para que el mensaje llegue a su destinatario, y después envía el testigo a través de la red.
 - √ Todas las estaciones de la red leen la dirección que contiene el testigo.
 - si no coincide con la de la estación que lo ha recibido, se pasa a la siguiente.
 - ✓ La estación receptora lee el mensaje, pone una marca en el testigo indicando que lo ha aceptado o denegado, y lo vuelve a mandar a la red.
 - ✓ La estación emisora original marca el testigo como vacío y lo manda a la red.
- Tipos
 - ✓ Paso de testigo en Bus (token bus). Es un anillo "lógico" en una red de topología física en bus
 - ✓ Paso de testigo en anillo (token Ring). Tecnica de control de acceso para la topología en anillo.

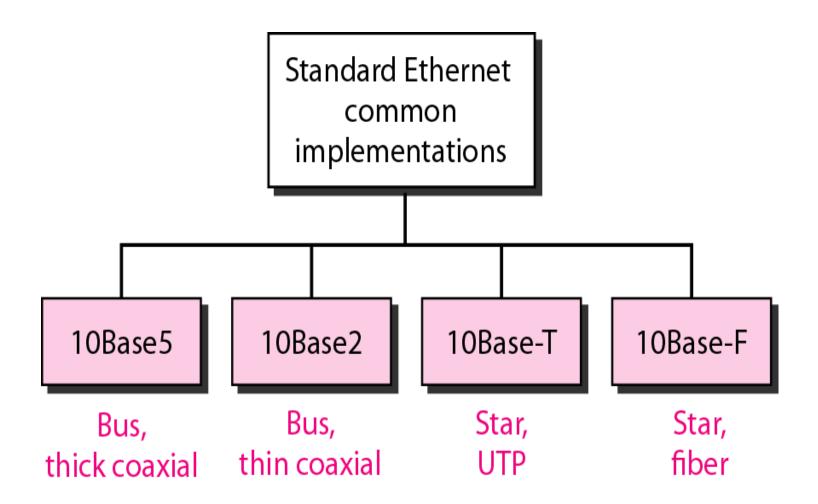

Método de reserva

Reserva

- ✓ Los nodos solicitan una reserva y no inician la transmisión de la información hasta ésta se le concede.
- ✓ El anillo ranurado (*slotted ring*) se basa en la circulación de una determinada cantidad de paquetes vacíos (ranuras o *slots*) en el anillo.
- ✓ Se ha propuesto para redes MAN con el nombre de anillo Orwell.

Diseño de una LAN

- Elección de protocolo de bajo nivel
- Elección de topología
- Elección de los elementos pasivos
 - ✓ Cables
 - ✓ Rosetas
 - √ Canaletas
- Elección de los elementos activos
- Tarjeta de red
- Concentradores/swich
- Elección de la distribución de la red
- Elección del recorrido



Velocidades de Ethernet

Velocidad	Apareció en:	Nivel físico heredado de
10 Mb/s compartidos	1981	De nada. Nuevo
10 Mb/s conmut.	1992	De nada. Nuevo
100 Mb/s	1995	FDDI (100 Mb/s)
1 Gb/s	1998	Fibre Channel (800 Mb/s)
10 Gb/s	2002	Basado en SDH (STM-64)
40 Gb/s	2009	Basado en SDH (STM-192)
100 Gb/s	2011	??

Denominación de medios en Ethernet

```
BROAD = Banda Ancha (analógico)
Velocidad (Mb/s)
         10BASE-T ← Tipo de cable: T: Twisted (UTP)
                                    C: Coaxial
                                   F: Fiber (Fibra óptica)
        100BASE-TX ← Codificación: X: Normal
       1000BASE-SX
                  Ç Ventana Fibra óptica: S (Short): 1ª ventana
                                           L (Long): 2<sup>a</sup> ventana
        10GBASE-LR
                                           E (Extended): 3ª ventana
```


Red ethernet

- 10-BASE-5 Ethernet gruesa 100 en un segmento.
- 10-BASE-2 Ethernet fina máximo 185 metros, 30 nodos por segmento.
- 10-BROAD-36 cable coaxial (75 ohms), banda ancha, usando un ancho de 14 Mhz.
- 1-BASE-5
- 10-BASE-T 10 Mbps UTP, 100 metros.
- 100-BASE-X Llamada Fast-Ethernet (Ethernet rápida),
 - ✓ UTP (Par trenzado sin apantallar), STP (UTP apantallado) o con fibra óptica.
- 10 BASE FL fibra óptica. 2 Km
- GIGABIT ETHERNET
 - √ 1000BASE-SX, 1000BASE-LX, 1000BASE-CX,1000BASE-T

Algunos medios físicos de Ethernet

Medio	Cable	Distancia	Costo
(1BASE5)	UTP-2	500m	Bajo
(10BASE5)	Coax grueso 50 Ω	500 m	Bajo
(10BASE2)	Coax fino 50 Ω	185 m	Bajo
(10BROAD36)	Coax 75 Ω	3,6 Km	Alto
10BASE-T	UTP-3/5	100/150 m	Bajo
10BASE-F	F.O. multim.	2 Km	Medio
100BASE-TX	UTP-5	100 m	Bajo
100BASE-FX	F.O. multim.	2 Km	Alto
1000BASE-T	UTP-5e	100 m	Medio
1000BASE-SX	F.O. multim.	500 m	Medio
1000BASE-LX	F.O. monom.	5 Km	Alto
10GBASE-CX4	Coax 4 pares	15 m	Bajo
10GBASE-T	UTP-6/6 ^a	55/100 m	Bajo
10GBASE-LR	F.O. monom.	10 Km	Alto
10GBASE-ER	F.O. monom.	40 Km	Muy alto
40GBASE	Cobre	10 m	N.D.
	F.O. monom.	10 Km	N.D.
100GBASE	Cobre	10 m	N.D.
т.	F.O. monom.	40 Km	N.D.

40

Tutorial

http://sistemas.itlp.edu.mx/tutoriales/redes/index.htm